Three-dimensional structure of the type III secretion chaperone SycE from Yersinia pestis.

نویسندگان

  • Artem G Evdokimov
  • Joseph E Tropea
  • Karen M Routzahn
  • David S Waugh
چکیده

Many bacterial pathogens utilize a type III (contact-dependent) secretion system to inject cytotoxic effector proteins directly into host cells. This ingenious mechanism, designed for both bacterial offense and defense, has been studied most extensively in Yersinia spp. To be exported efficiently, at least three of the effectors (YopE, YopH and YopT) and several other proteins that transit the type III secretion pathway in Yersinia (YopN, YopD and YopB) must first form transient complexes with cognate-specific Yop chaperone (Syc) proteins. The cytotoxic effector YopE, a selective activator of mammalian Rho-family GTPases, associates with SycE. Here, the structure of Y. pestis SycE at 1.95A resolution is reported. SycE possesses a novel fold with an unusual dimerization motif and an intriguing basic cavity located on the dyad axis of the dimer that may participate in its interaction with YopE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel protein-protein interactions of the Yersinia pestis type III secretion system elucidated with a matrix analysis by surface plasmon resonance and mass spectrometry.

Binary complexes formed by components of the Yersinia pestis type III secretion system were investigated by surface plasmon resonance (SPR) and matrix-assisted laser desorption time-of-flight mass spectrometry. Pairwise interactions between 15 recombinant Yersinia outer proteins (Yops), regulators, and chaperones were first identified by SPR. Mass spectrometry confirmed over 80% of the protein-...

متن کامل

Interaction of the disordered Yersinia effector protein YopE with its cognate chaperone SycE.

We describe an efficient approach to model the binding interaction of the disordered effector protein to its cognate chaperone in the type III secretion system (T3SS). Starting from de novo models, we generated ensembles of unfolded conformations of the Yersinia effector YopE using REMD simulations and docked them to the chaperone SycE using a multistep protein docking strategy. The predicted Y...

متن کامل

YscB of Yersinia pestis functions as a specific chaperone for YopN.

Following contact with a eucaryotic cell, Yersinia species pathogenic for humans (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) export and translocate a distinct set of virulence proteins (YopE, YopH, YopJ, YopM, and YpkA) from the bacterium into the eucaryotic cell. During in vitro growth at 37 degrees C in the presence of calcium, Yop secretion is blocked; however, in the absence o...

متن کامل

Structure of the Yersinia pestis type III secretion chaperone SycH in complex with a stable fragment of YscM2.

Pathogenic Yersinia species use a type III secretion system to inject cytotoxic effector proteins directly into the cytosol of mammalian cells, where they neutralize the innate immune response by interfering with the signal-transduction pathways that control phagocytosis and inflammation. To be exported efficiently, some effectors must transiently associate with cognate cytoplasmic secretion ch...

متن کامل

Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis.

Yersinia pestis, the causative agent of plague, utilizes a type III secretion system (T3SS) to inject effector proteins directly into the cytosol of mammalian cells where they interfere with signal transduction pathways that regulate actin cytoskeleton dynamics and inflammation, thereby enabling the bacterium to avoid engulfment and destruction by macrophages. Type III secretion normally does n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 58 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2002